huHSC-NCG
公司基于實(shí)驗(yàn)動(dòng)物創(chuàng)制策略與基因工程遺傳修飾技術(shù),為客戶提供具有自主知識(shí)產(chǎn)權(quán)的商品化小鼠模型,同時(shí)開(kāi)展模型定制、定制繁育、功能藥效分析等一站式服務(wù),滿足客戶在基因功能認(rèn)知、疾病機(jī)理解析、藥物靶點(diǎn)發(fā)現(xiàn)、藥效篩選驗(yàn)證等基礎(chǔ)研究和新藥開(kāi)發(fā)領(lǐng)域的實(shí)驗(yàn)動(dòng)物小鼠模型相關(guān)需求。
huHSC-NCG小鼠是將人造血干細(xì)胞 (CD34+HSC)移植到輻照清髓的重度免疫缺陷小鼠NCG體內(nèi),并分化產(chǎn)生各類造血或者免疫細(xì)胞,如T細(xì)胞、B細(xì)胞以及NK細(xì)胞等,從而獲得免疫系統(tǒng)人源化的模型以NCG小鼠為受體鼠,構(gòu)建huHSC-NCG人源化小鼠。

應(yīng)用領(lǐng)域
1. 多種腫瘤免疫治療藥物的評(píng)價(jià)
2. 免疫相關(guān)的藥物評(píng)價(jià)
模型數(shù)據(jù)

圖1. NCG小鼠清髓效果檢測(cè)
由于輻照可以清除小鼠骨髓中的造血干細(xì)胞,從而提高人源HSC移植后的重建水平,因此選用輻照處理后的NCG小鼠移植人源HSC。利用流式細(xì)胞技術(shù)檢測(cè)輻照清髓效果。其中mCD45為小鼠白細(xì)胞標(biāo)記物,mCD117為造血干細(xì)胞標(biāo)記物。上圖顯示輻照后mCD45+mCD117+細(xì)胞群體比例為1.11%,顯著低于未輻照組(13.5%)。表明150 cGys劑量輻照6-7周NCG小鼠可達(dá)到理想的清髓效果。

圖2. huHSC-NCG小鼠的生存曲線及體重變化情況
huHSC-NCG小鼠存活時(shí)間可超過(guò)37周,且生存率與NCG野生型小鼠無(wú)顯著差異。huHSC-NCG小鼠體重隨時(shí)間變化呈增長(zhǎng)趨勢(shì),前期與NCG野生型小鼠體重?zé)o顯著差異,隨著時(shí)間延長(zhǎng),huHSC-NCG小鼠體重下降,在實(shí)驗(yàn)終點(diǎn),huHSC-NCG小鼠體重顯著低于NCG野生小鼠(***, P < 0.001)。數(shù)據(jù)以Mean ± SEM形式呈現(xiàn)。

圖3. huHSC-NCG重建效果鑒定
huHSC-NCG小鼠的免疫重建效率高,主要重建T細(xì)胞和大量未成熟的B細(xì)胞,以及少量NK細(xì)胞。

圖4. 基于huHSC-NCG小鼠模型的體內(nèi)藥效評(píng)價(jià)
基于huHSC-NCG小鼠體內(nèi)用藥試驗(yàn)。將對(duì)數(shù)生長(zhǎng)期人淋巴瘤細(xì)胞Raji細(xì)胞接種到huHSC-NCG小鼠皮下,待腫瘤生長(zhǎng)至平均體積約40-50 mm3時(shí),根據(jù)小鼠腫瘤體積和體重,隨機(jī)分為Vehicle組,Tri-TE給藥組,Blincyto給藥組,并使用相應(yīng)的藥物進(jìn)行治療。結(jié)果顯示:Tri-TE組(TGI=62.04%)及Blincyto給藥組(TGI=51.14%)對(duì)huHSC-NCG的Raji細(xì)胞荷瘤鼠上腫瘤生長(zhǎng)有抑制作用。
NCG在CAR-T治療上的應(yīng)用
CAR-T(Chimeric Antigen Receptor T Cell)是腫瘤免疫治療的新方法。CAR-T細(xì)胞具有靶向識(shí)別腫瘤抗原的能力,其殺傷腫瘤細(xì)胞無(wú)需進(jìn)行抗原遞呈,與以往免疫療法相比,具有特異性高、攻擊持久等優(yōu)勢(shì)。在惡性腫瘤,特別是血液腫瘤治療中有很好的療效。集萃藥康具有豐富的CDX和自主知識(shí)產(chǎn)權(quán)的PDX庫(kù),包括多種實(shí)體瘤和血液瘤,為CAR-T藥效評(píng)價(jià)提供了豐富的腫瘤模型資源。同時(shí),集萃藥康開(kāi)發(fā)了外周血中CAR-T細(xì)胞計(jì)數(shù)方法和細(xì)胞因子檢測(cè)方法,滿足CAR-T實(shí)驗(yàn)檢測(cè)需求。

圖5.在NCG小鼠上接種Nalm6-Luciferase后,進(jìn)行CAR-T藥效評(píng)價(jià)
Nalm6-Luciferase細(xì)胞尾靜脈接種到NCG小鼠后,第7天根據(jù)腫瘤負(fù)荷進(jìn)行分組,分別給予Control T,CAR-T1及CAR-T2細(xì)胞治療,并于D12,D19,D26利用活體成像技術(shù)檢測(cè)腫瘤負(fù)荷。據(jù)體內(nèi)成像及統(tǒng)計(jì)結(jié)果顯示,與Control T相比,CAR-T1和CAR-T2細(xì)胞均能很好的抑制小鼠體內(nèi)腫瘤生長(zhǎng),延長(zhǎng)小鼠生存期。
參考文獻(xiàn)
1.
Hu B, Yu M, Ma X, et al. Interferon-a potentiates anti-PD-1 efficacy by
remodeling glucose metabolism in the hepatocellular carcinoma
microenvironment. Cancer discovery. Apr 12
2022;doi:10.1158/2159-8290.Cd-21-1022(IF:39.397)
2. Ma W, Yang Y, Zhu J, et al. Biomimetic Nanoerythrosome‐Coated Aptamer‐DNA Tetrahedron/Maytansine Conjugates: pH‐Responsive and Targeted Cytotoxicity for HER2‐positive Breast Cancer. Advanced Materials.2109609.(IF:30.849)
3. Song H, Liu D, Wang L, et al. Methyltransferase like 7B is a potential therapeutic target for reversing EGFR-TKIs resistance in lung adenocarcinoma. Molecular cancer. Feb 10 2022;21(1):43. (IF:41.444)
4. Zhang L, Zhu Z, Yan H, et al. Creatine promotes cancer metastasis through activation of Smad2/3. Cell metabolism. 2021;33(6):1111-1123. e4.(IF:22.4)
5. Liu C, Zou W, Nie D, et al. Loss of PRMT7 reprograms glycine metabolism to selectively eradicate leukemia stem cells in CML. Cell Metab. Apr 26 2022.(IF:22.4)
6. Zhang X-N, Yang K-D, Chen C, et al. Pericytes augment glioblastoma cell resistance to temozolomide through CCL5-CCR5 paracrine signaling. Cell Research. 2021:1-16. (IF:25.617)
7. Dai Z, Mu W, Zhao Y, et al. T cells expressing CD5/CD7 bispecific chimeric antigen receptors with fully human heavy-chain-only domains mitigate tumor antigen escape. Signal transduction and targeted therapy. Mar 25 2022;7(1):85.(IF:18.187)
8. Dai Z, Liu H, Liao J, et al. N7-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Molecular Cell. 2021. (IF:17.97)
9. Hao M, Hou S, Li W, et al. Combination of metabolic intervention and T cell therapy enhances solid tumor immunotherapy. Science Translational Medicine. 2020;12(571).(IF:17.956)
10. Liu Y, Liu G, Wang J, et al. Chimeric STAR receptors using TCR machinery mediate robust responses against solid tumors. Science Translational Medicine. 2021;13(586).(IF:17.956)
11. Yan H, Wang Z, Sun Y, Hu L, Bu P. Cytoplasmic NEAT1 Suppresses AML Stem Cell Self‐Renewal and Leukemogenesis through Inactivation of Wnt Signaling. Advanced Science. 2021;8(22):2100914. (IF:17.521)
12. Luo Q, Wu X, Chang W, et al. ARID1A prevents squamous cell carcinoma initiation and chemoresistance by antagonizing pRb/E2F1/c-Myc-mediated cancer stemness. Cell Death & Differentiation. 2020;27(6):1981-1997. (IF:12.067)
13. Wu M, Zhang X, Zhang W, et al. Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis. Nature communications. Mar 16 2022;13(1):1371.(IF:14.919)
14. Liu H, Bai L, Huang L, et al. Bispecific antibody targeting TROP2xCD3 suppresses tumor growth of triple negative breast cancer. Journal for ImmunoTherapy of Cancer. 2021;9(10):e003468.(IF:12.469)
